Journal of Chromatography, 90 (1974) 396–398 © Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands

CHROM. 7253

Note

Chromatographic separation of 2-phenylquinoline analogues

G. JOHN DIGREGORIO

Department of Pharmacology, Hahnemann Medical College, 235 North 15th Street, Philadelphia, Pa. 19102 (U.S.A.)

(First received October 5th, 1973; revised manuscript received November 26th, 1973)

Recently, a series of new compounds, 2-phenylquinolines, were found to possess potent autonomic nervous system effects^{1,2}. However, little or no information was available on the separation and quantitation of these particular compounds from biological material. As a result of this lack of information, the following study was performed to establish a sensitive and reproducible chromatographic procedure for the separation and quantitation of various 2-phenylquinoline analogues.

MATERIALS AND METHODS

Table I illustrates the various 2-phenylquinoline analogues utilized in the study. These compounds were synthesized by Dr. A. Gennaro (Philadelphia College of Pharmacy and Science).

TABLE I

2-PHENYLQUINOLINE ANALOGUES

Compound code letter	Substituents and other chemical changes		
A	None		
В	1-Methyl		
С	1-Methyl; no 2-phenyl ring		
D	1-Methyl; 3-hydroxy		
E	1-Methyl; 4'-hydroxy		
F	1-Methyl; 3',4'-dimethoxy		
G	1-Methyl; 2',4'-dimethoxy		
н	1-Methyl; 2',5'-dimethoxy		
I	I-Methyl; 3',4',5'-trimethoxy		
J	1-Methyl: 3'.4'-methylenedioxy		

1-Methyl: 3',4'-methylenedioxy

K 2',4'-Dimethoxy

L 2',5'-Dimethoxy

M 3',4',5'-Trimethoxy N 3-Hydroxy For both the thin-layer (TLC) and gas-liquid (GLC) chromatographic procedures, the various compounds were dissolved in chloroform at a concentration of 1 mg/ml.

TLC was carried out on a silica gel thin-layer plate (Analtech, Newark, Del., U.S.A.). The two solvent systems utilized were: ethyl acetate-methanol-ammonium hydroxide (17:2:1) and methanol-ammonium hydroxide (19:1). Detection of the compounds was accomplished by utilizing a multiple spray system³.

GLC was carried out on a Glowall (Willow Grove, Pa., U.S.A.), Model 310 instrument, equipped with a flame ionization detector. The chromatographic conditions were as follows: the temperatures of the injection block, the oven, and the detector were 275° , 255° , and 275° , respectively; the carrier gas was nitrogen at a flow-rate of 40 ml/min. The column employed was a 3% OV-17 on Chromosorb W HP 80-100 mesh (Supelco, Bellefonte, Pa., U.S.A.). One microgram of each of the compounds was injected into the column. The preparation of the bis(trimethyl-silyl)acetamide (BSA) derivatives was carried out according to the method of Fish and Wilson⁴.

RESULTS AND CONCLUSIONS

Table II shows the R_F values of the various 2-phenylquinoline compounds studied, utilizing two solvent systems and a multiple detection system. In solvent system S₁, all the quaternary compounds (B, C, D, E, F, H, I, and J) with the exception of compound G possessed relatively indistinguishably low R_F values. Similarly,

TABLE II

Þ

TLC SEPARATION OF PHENYLQUINOLINE ANALOGUES

Solvent systems: S_1 =ethyl acetate-methanol-ammonium hydroxide (17:2:1); S_2 = methanolammonium hydroxide (19:1). Detection: $D_1 = UV$ light; $D_2 = 0.1\%$ diphenylcarbazone plus 0.25% mercuric sulfate; D_3 =iodoplatinate solution; D_4 =Dragendorff solution. Color code: BI=blue; Br=brown; Or=orange; Pu=purple; R=red; W=white; Y=yellow; YPu=yellowish purple.

Compound	R _F × 100 value		Detection			
	$\overline{S_1}$	S_2	$\overline{D_1}$	D_2	D ₃	D ₄
A	99	87	w	_	Br	R-Pu
В	18	20	Pu	Pu	Br	R-Pu
С	14	70	BI	-	Bl	Bl
D	38	83	Y	YPu	Br	R-Pu
E	8	13	Y		_	_
F	12	15	Y	YPu	Br	
G	99	87	Or	YPu	Or	Or
Н	14	17	Or	YPu	Br	R-Pu
I	-11	13	Y	YPu	Br	R-Pu
J	17	19	Y	YPu	Br ·	R-Pu
к	99	87	Or.	Y '	Or	Or
L	99	87	Or	Y	Or	Or
М	99	87	Y	Y	Or	Or
N	90	94	Y			Ör

all the tertiary compounds (A, K, L, M and N) were found to have very high R_F values. In an attempt to achieve a better separation, a second solvent system (S₂) was utilized. The results indicated that, although some of the closely related analogues separated, the majority of the R_F values still overlapped.

TABLE III

GLC SEPARATION OF 2-PHENYLQUINOLINE ANALOGUES

Optimum conditions as given in Materials and methods.

Compound	Relative retention times			
	Free form*	* BSA derivatives*		
A	1.00	1.00		
в	1.00	ND		
С	ND**	1.50		
D	1.75	1.50		
E	3.62	2.75		
F	5.0	ND		
G	5.75	3.00		
н	3.62	3.75		
I	7.25	ND		
J	4.00	4.37		
ĸ	5.75	3.25		
L	3.75	3.50		
М	7.50	7.00		
N	1.75	1.50		

* Retention times are relative to compound A (2 min for both the free and the BSA derivatives).

** ND = Non-detectable.

As a result of the above findings, the compounds have been studied with the gas chromatograph. Table III shows the relative retention times to 2-phenylquinoline of the various compounds under study. The results indicate that utilizing the gas chromatograph, a separation and possibly a quantitation of the 2-phenylquinoline analogues could be accomplished with a high degree of accuracy.

REFERENCES

- 1 G. J. DiGregorio and J. R. DiPalma, Brit. J. Pharmacol., 30 (1967) 531.
- 2 H. Hitner, G. J. DiGregorio, J. R. DiPalma, J. DiPalma and R. McMichael, Arch. Int. Pharmacodyn. Ther., 200 (1972) 273.
- 3 B. Davidow, N. L. Petri and B. Quame, Tech. Full. Registry Med. Tech., 38 (1969) 298.
- 4 F. Fish and W. D. C. Wilson, J. Chromatogr., 40 (1969) 164.